{{flagHref}}
Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
Stanford Advanced Materials
/ {{languageFlag}}
Select language
Stanford Advanced Materials {{item.label}}

Superelasticity And Shape Memory Of Nitinol

Nickel-Titanium (Nitinol) alloys possess a combination of physical and mechanical properties that make them suitable for manufacturing self-expanding stents. Some currently used materials do not possess these properties. They exhibit elastic deployment, thermal deployment, and buckling resistance. They also show stress retention, dynamic interference, pre-set stiffness, magnetic resonance imaging compatibility, X‑ray visibility, and biocompatibility. The term "shape memory" describes the ability to recover a predetermined shape after plastic deformation. "Superelasticity" refers to the ability to undergo elastic strain that compares with that of medical grade stainless steel.

Nitinol Spring
Nitinol alloys are increasingly used for manufacturing self-expanding stents, transplant support systems, filters, baskets, and various devices for interventional procedures. Nitinol Medical Technologies, World Medical Technologies, and Cordis provide products based on the properties of these alloys. Their elastic deployment and shape memory characteristics are well documented. In combination with strength, fatigue resistance, biocompatibility, and MRI compatibility, these alloys support the development of quality medical devices. Conventional materials such as stainless steel, titanium, and Eigilloy exhibit mechanical behaviour that differs from human tissue. Nickel-Titanium alloys are nearly equiatomic intermetallic compounds of titanium and nickel.

Nitinol alloys
In combination with strength, fatigue resistance, biocompatibility, and MRI compatibility, these alloys support the development of quality medical devices. Conventional metallic materials such as stainless steel, titanium, and Eigilloy exhibit mechanical behaviour that differs from that of human tissue. Similarly, Nickel-Titanium alloys are nearly equiatomic or nearly equiatomic intermetallic compounds of titanium and nickel.

About the author

Chin Trento

Chin Trento holds a bachelor's degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years at Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thoughts on "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *

SUBSCRIBE TO OUR NEWSLETTER

* Your Name
* Your Email
Success! You are now subscribed.
You have successfully subscribed! Check your inbox soon to receive great emails from this sender.

Related news & articles

MORE >>
Alumina in Hydrogen Energy and Fuel Cells

A brief introduction to alumina and its use in fuel cell systems and hydrogen energy. This post addresses the thermal and chemical stability of alumina ceramics and the advantages of advanced alumina in solid oxide fuel cells.

LEARN MORE >
Clinical Applications of Porous Tantalum

Porous tantalum has gained attention in biomedical engineering due to its biocompatibility, corrosion resistance, and mechanical properties that align with those of natural bone. It was initially developed for orthopaedics, and its applications have since expanded to dentistry, cardiovascular devices, and experimental regenerative medicine. This text reviews its experimental and clinical uses.

LEARN MORE >
Multifaceted Synthesis of Functional Bismuth Silicon Oxide (BSO) Crystals

Bismuth silicon oxide (BSO) represents a category of functional crystalline materials characterised by significant structural polymorphism. Its chemical composition is primarily evident in two stable crystal structures: the cubic phase Bi4Si3O12 and the cubic chlorite phase Bi12SiO20.

LEARN MORE >
Leave A Message
Leave A Message
* Your Name:
* Your Email:
* Product Name:
* Your Phone:
* Comments: