{{flagHref}}
Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
/ {{languageFlag}}
Select language
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Select language
Stanford Advanced Materials {{item.label}}

Graphene Leading The Charge In Faster Electronics

Graphene was identified over a decade ago as a significant development in electrical conductivity. The element is monatomic and two-dimensional. Its cost of integration into established silicon structures limited practical application. Recent progress in cost-effective processing has led to a global reassessment of graphene’s attributes. Its use in high-speed processors now receives attention. The production challenges have been addressed, thereby allowing application on various substrates.

Reduced Constraints on PCB Area

A printed circuit board has limited area. Past materials required greater volume to minimise wear and to maintain resistance. Graphene requires less area and fewer material quantities. It exhibits high electrical conductivity. It transmits electrical energy with less loss than currently used materials.

Practical Application

Graphene maintains its form under deformation without compromising its crystalline lattice. Its bilayer structure facilitates adherence with minimal change. Graphene tolerates high thermal loads. It is expected to improve chip manufacturing and solar panel efficiency. Renewable energy systems depend on cost reduction. The specific properties of graphene enable production of durable, cost-effective panels. The technology is applicable on existing platforms.

About the author

Chin Trento

Chin Trento holds a bachelor's degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years at Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thoughts on "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment*
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment*
Name *
Email *

SUBSCRIBE TO OUR NEWSLETTER

* Your Name
* Your Email
Success! You are now subscribed.
You have successfully subscribed! Check your inbox soon to receive great emails from this sender.

Related news & articles

MORE >>
Six Must-Knows About DFARS

The Defense Federal Acquisition Regulation Supplement (DFARS) is a regulatory framework employed by the US Department of Defence (DoD) to manage defence procurement. A clear understanding of DFARS is required from all companies involved in the US Department of Defence supply chain. This article provides a structured overview that addresses six key questions: What, Who, What, Why, When, and How. Additional non-Chinese, domestic, and DFARS-compliant materials are available at Stanford Advanced Materials.

LEARN MORE >
The 2025 Nobel Prize in Chemistry: What Are MOFs?

The Royal Swedish Academy of Sciences awarded the 2025 Nobel Prize in Chemistry to Susumu Kitagawa, Richard Robson, and Omar M. Yaghi for their forward-looking research on metal–organic frameworks (MOFs). The significant materials, with their large internal surface areas, adjustable pore structures, and unitary design, have proven to be a cornerstone of materials chemistry with innovative use in energy storage, environmental decontamination, and molecular engineering.

LEARN MORE >
The Most Common Polymer Plastic Selection Options: PP vs PE

PE and PP have established a complementary performance profile with distinct application domains in high-end industrial sectors, owing to their unique molecular structures and modifiable potential.

LEARN MORE >
Leave A Message
Leave A Message
* Your Name:
* Your Email:
* Product Name:
* Your Phone:
* Comments: