Seawater Will Soon Be Drinkable Thanks To Graphene
Graphene has attracted significant research interest in the recent past. It is used in diverse fields and produces quantifiable results. Researchers at the University of Manchester identified a new application for graphene as a filter for seawater.
A filter was manufactured using graphene oxide, a derivation of graphene with oxygen groups attached. In its dry state, graphene oxide does not allow gas molecules to pass. It remains vacuum‐tight. When water is present, the nanochannels expand and permit water molecules to pass.
Molecules, ions or particles too large for the channels remain on the filter surface. The nanochannels in graphene oxide swell slightly. They expand to allow approximately three atomic layers of water and select ions to be transmitted.
The study, in which Dr Irina Grigorieva participated, focused on preventing the swelling of nanochannels. This approach ensures that only water is transmitted. Consequently, when used for seawater filtration, salt ions remain on the filter surface.
Water is a limited resource with decreasing availability. Researchers are investigating methods to purify water so that supplies meet drinking standards. Increasing the volume of potable water is a priority for many communities.
Dr Irina Grigorieva reported that one glass of drinkable water is produced after manually pumping seawater through the filter for several minutes. This development is advancing towards practical implementation. Further steps are necessary before widespread application.
If successful, this project would allow coastal communities to obtain drinking water by filtering seawater. The method ensures that abundant seawater can be rendered potable. Given that seawater is available in large quantities, this approach addresses regional drinking water challenges.
This work expands the portfolio of applications for graphene. Its high electrical conductivity improves electronic device performance. It is used in fingerprint detection techniques. It is also employed in health applications, such as components in pacemakers that do not require a battery.