{{flagHref}}
Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
/ {{languageFlag}}
Select language
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Select language
Stanford Advanced Materials {{item.label}}

Seawater Will Soon Be Drinkable Thanks To Graphene

Graphene has attracted significant research interest in the recent past. It is used in diverse fields and produces quantifiable results. Researchers at the University of Manchester identified a new application for graphene as a filter for seawater.

A filter was manufactured using graphene oxide, a derivation of graphene with oxygen groups attached. In its dry state, graphene oxide does not allow gas molecules to pass. It remains vacuum‐tight. When water is present, the nanochannels expand and permit water molecules to pass.

Molecules, ions or particles too large for the channels remain on the filter surface. The nanochannels in graphene oxide swell slightly. They expand to allow approximately three atomic layers of water and select ions to be transmitted.

The study, in which Dr Irina Grigorieva participated, focused on preventing the swelling of nanochannels. This approach ensures that only water is transmitted. Consequently, when used for seawater filtration, salt ions remain on the filter surface.

Water is a limited resource with decreasing availability. Researchers are investigating methods to purify water so that supplies meet drinking standards. Increasing the volume of potable water is a priority for many communities.

Dr Irina Grigorieva reported that one glass of drinkable water is produced after manually pumping seawater through the filter for several minutes. This development is advancing towards practical implementation. Further steps are necessary before widespread application.

If successful, this project would allow coastal communities to obtain drinking water by filtering seawater. The method ensures that abundant seawater can be rendered potable. Given that seawater is available in large quantities, this approach addresses regional drinking water challenges.

This work expands the portfolio of applications for graphene. Its high electrical conductivity improves electronic device performance. It is used in fingerprint detection techniques. It is also employed in health applications, such as components in pacemakers that do not require a battery.

About the author

Chin Trento

Chin Trento holds a bachelor's degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years at Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thoughts on "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment*
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment*
Name *
Email *

SUBSCRIBE TO OUR NEWSLETTER

* Your Name
* Your Email
Success! You are now subscribed.
You have successfully subscribed! Check your inbox soon to receive great emails from this sender.

Related news & articles

MORE >>
Case Study: Niobium Mesh for Titanium Anodizing Basket

Stanford Advanced Materials is a reliable supplier of advanced materials and has been at the forefront of special product supply in an array of industries for many years. More recently, the company provided support to a high-technology manufacturing project for the production of a titanium anodising basket; this special basket for titanium anodising called for a custom-made solution using a special type of niobium mesh—a practical solution for the critical need in the titanium anodising industry.

LEARN MORE >
Tantalum Ingots in Corrosion-Resistant Gas Compressor Components

Material selection for the various components of gas compressors is important for durability, reliability, and efficiency over an extended period. In components subjected to attack by aggressive media, tantalum ingots have emerged as a primary choice because of their exceptional corrosion resistance, combined with high-temperature stability.

LEARN MORE >
Different Types of Silicon Wafers

Many individuals may have worked with silicon wafers without realising it. Anyone who has ever used a computer or a mobile phone has likely depended on silicon wafers before. As one of the primary suppliers of silicon wafers in the market, Stanford Advanced Materials (SAM) receives inquiries such as "What is a silicon wafer?" or "Which silicon wafer should I purchase for this purpose?" This guide provides answers to these questions about silicon wafers.

LEARN MORE >
Leave A Message
Leave A Message
* Your Name:
* Your Email:
* Product Name:
* Your Phone:
* Comments: